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Spherical cap bubbles with laminar wakes 
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(Received 22 February 1968 and in revised form 16 December 1968) 

The steady rise of a given amount of gas in an infinite liquid under the action of 
buoyancy forces is examined. The shape of the bubbIe is that of a spherical cap. 
Behind the bubble there is a region of closed streamlines where the flow is 
assumed to be steady and rotational. The predicted velocity and geometry of the 
cap agree well with observation for a limited range of values of the Reynolds 
number. 

1. Introduction 
The motion of a gas bubble, rising steadily in an infinite liquid under the 

action of gravity, is primarily affected by the kinematic viscosity of the liquid, 
the surface tension of the gas-liquid interface and the presence of impurities in 
the liquid. 

If the liquid contains enough impurities, adsorption on the interface may 
create a shield. The liquid moves around the gas bubble as if the latter were made 
of solid material. In  our study we assume that the liquid contains no surfactants 
in appreciable quantity and the interface is free to move. 

When the size of the bubble is sufficiently small, surface tension forces pre- 
dominate and the bubble has a spherical shape. As the size of the bubble increases, 
dynamic forces due to the flow of liquid begin to affect the shape of the bubble 
which changes from a sphere to an oblate ellipsoid. By further increasing the 
amount of gas a point is reached when surface tension is entirely negligible. In  
this case the shape of the bubble is that of a spherical cap with alarge wake behind 
it. Two different situations may arise depending on the value of the Reynolds 
number (based on a characteristic dimension of the wake). If this number is 
sufficiently large, the bubble has a wobbling motion, more or less pronounced, 
and the flow in the wake is turbulent (Davies & Taylor 1950). If the Reynolds 
number is not too high (e.g. less than lo3) the motion remains steady and the 
flow is laminar everywhere. We shall concern ourselves only with this last case, 
assuming for simplicity that the Reynolds number is much larger than one (but 
not so high that the flow ceases to be laminar). Let us fist give a qualitative 
description of such a flow. The front part of the bubble is nearly spherical and the 
bottom is practically flat. Compare Collins’ (1966) photograph where the bottom 
is rather irregular, due to turbulence, with Haberman & Morton’s (1956) smooth 
picture using mineral oil. More precisely (Davenport, Richardson & Bradshaw 
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1967) for a laminar flow the bottom is slightly concave (see figure 1). Surface 
tension again has an influence on the curvature of the bubble where the front and 
the bottom parts join; this is of no importance for the rest of the flow. Behind the 
cap there is a region of closed streamlines where the flow is steady and rotational. 
The flow being axisymmetric, we call (L)  the closed streamline, that separates 
the closed flow from the outside, in any plane passing through the axis of sym- 
metry. Outside (L)  the flow is irrotational, except for a thin boundary layer near 
(L) ,  since we assume a very large Reynolds number. 

It may be seen that for a steady flow of this kind the volume of the bubble 
is a diminishing fraction of the volume of the closed wake region as the Reynolds 
number of the bubble motion increases.? We are primarily interested in the 
asymptotic (zeroth-order) solution when the Reynolds number becomes very 
large. I n  that case the volume of the bubble is negligible compared with that of 
the closed region, and can be ignored (to the zeroth order) when determining the 
liquid streamlines inside and outside the wake. 

Rippin & Davidson (1967) studied the same problem for an infinite and 
stagnant wake. I n  their words: “The free streamline theory has the advantage of 
a complete mathematical formulation, albeit based on unrealistic assumptions 
about the flow in the wake. ” It is interesting that their theory agrees fairly well 
with experiments in the case of a turbulent wake. On the other hand the present 
theory looks for a more realistic wake but is necessarily restricted to laminar 
flows. 

2. Asymptotic solution 
We consider only the motion of the liquid, ignoring the small volume occupied 

by the gas. The flow is axisymmetric and the system of co-ordinates is indicated 
on figure 1. We call U the steady upward velocity of the bubble. Let p be the 
density, p the pressure, ,u the viscosity, v (=pulp) the kinematic viscosity. 
Instead of a bubble moving in a medium a t  rest, we rather consider a motionless 
bubble the liquid having the uniform velocity U a t  infinity. If 2a is a character- 
istic dimension of the wake, the Reynolds number of the flow is 

Re = 2aU/v. (1) 

Because Re 9 1, outside (L),  the flow is irrotational except across a layer whose 
thickness goes to zero as Re -+ co. Since the boundary-layer thickness is very small, 
to  the zeroth order we commit only a negligible error in considering (L)  to be a 

t The relative magnitude of these two volumes can be estimated precisely. The author 
is grateful to Prof. G. K. Batchelor for suggesting the following derivation: 

Call a a characteristic dimension of the closed region, V the volume of the bubble, U its 
velocity, p the viscosity and Re the Reynolds number based on a. A t  high Reynolds 
number and in the absence of a rigid boundary, the total viscous dissipation is proportional 
to pa3( U/a)2 .  Davies & Taylor (1950) have shown that U 2  is proportional to the radius of 
curvature R of the upper surface of the bubble. Assuming that R and a are of the same 
order, then the dissipation is proportional to Ua31Re. The dissipation is equal to the rate 
of change in potential energy, itself proportional to V U .  Consequently, (volume of bubble)/ 
(volume of closed region), which is proportional to V/a3,  is of order Re-l. 
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streamline of the outside irrotational flow. To the same order an application of 
Batchelor’s (1956) theorem indicates that 

[ / r  = A (2) 

inside (L),  where ( is the vorticity and A is a constant. Furthermore, it is quite 
clear that the pressures due to the flow in the wake and the irrotational flow 
must be equal (to the zeroth order) on (L). Since Bernoulli’s equation holds to 
the same order, the tangential velocities must match on (L). Let us denote by 
$ the stream function. At infinity the flow is uniform (velocity U), hence $ must 
behave like, $ N $Ur2 at infinity. (3) 

FIGURE 1. Sketch of streamlines around a spherical cap bubble. 

Since $ is defined up to an arbitrary constant we can always write 

$ = O  on (L).  (4) 

a$/& is continuous at  (L). ( 5 )  

Also from the matching of tangential velocities 

Equations (3), (4)’ (5) represent the boundary conditions associated with (2) 
inside (L)  and = 0 outside (L)  or from the definition of vorticity 

Notice that viscosity has disappeared entirely from the set of equations (3) to 
( 6 )  which we have to solve. Of course, viscosity plays an essential role in our 
problem as it is responsible for the diffusion of vorticity in the wake (hence 
Batchelor’s theorem and equation ( 6 ) ) .  
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Suppose we take (L)  to be an arbitrary simple curve, then it is well known that 
(3)-( 6) have a unique solution, for a given U and A ,  if we only replace (4) by the 
condition that $be continuous at  (L)  (rather than constant). Insisting then that 
$must be zero on (L)  gives a condition for the determination of (L) .  It is plausible 
to suppose that this condition determines (L)  uniquely, but we have not been 
able to prove this. However, it is easy to verify that a solution is 

$ = &Ar2(r2 + z2 - a2) inside (L),  (7) 

$ = iUr2[1 - a3/(r2 + z2)3] outside (L),  (8) 

A = y( U/a2); (9) 

(L )  is a circle of radius a, given by (9) in terms of A and U .  The inside solution is 
the well known Hill’s vortex. 

The flow field is entirely determined but for A and U which are as yet unknown. 
The gas bubble lies at the top stagnation point within (L)  (see figure 1).  Inside 
the bubble the pressure is uniform since we can neglect the dynamic pressure 
induced by the circulation of the gas whose density is negligible. Hence the 
pressure exerted by the outside liquid on the gas must be constant. From this 
condition we deduce at once (see Davies & Taylor 1950) 

$U2 = ga. (10) 

An additional equation is obtained from the conservation of energy. The 
viscous dissipation, @, is easily computed (see Harper & Moore 1968). 

CD = 30n,uU2a. (11)  
From conservation of energy we must then have <D = DU, where D is the drag 

where V is the volume of the gas bubble. Equations (1 1)  and (12) can be combined 
and give at  once 

Figure 2 indicates the experimental results for mineral oil and the theoretical 
curve obtained from (13). Experimentally it was found that around V i  E 1.5 em 
the bubble changes shape from an oblate ellipsoid to a spherical cap (Haberman 
& Morton 1956). A t  that point Re = 165, which is sufficiently high for our theory 
to be adequate. Figure 3 indicates similar results for an aqueous solution with 
6.1 yo of polyvinyl alcohol. In this experiment bubbles were produced in a 15 cm 
diameter tube; when V i  2: 2 cm interactions with the wall slow down the bubble 
significantly (see Davenport, Richardson & Bradshaw 1967). 

The geometrical characteristics of the spherical cap are easily determined in 
terms of V and a (assuming the bottom to be flat). For instance, calling 8 half the 
angle subtended by the bubble at  the centre of the sphere we have, 

The height, h and basal radius, b are given at  once in terms of 8 and a by, 
c0s30-3c0s8+2 = 3V/na3. (14) 

h = a(l-cOsO), (15) 

b = asin8. (16) 
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FIQURE 2. Comparison of velocity of rise from (13) (lower curve) and (20) (dashed line) 
with experimental results (dotted line) for mineral oil (Haberman & Morton 1956). The 
spherical cap was observed for V* > 1.5 cm. 
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FIGURE 3. Comparison of velocity of rise from (13) (lower curve) and (20) (dashed line) 
with experimental results (dotted line) for a 6.1 yo aqueous solution of polyvinyl alcohol 
(Davenport, Richardson & Bradshaw 1967). For V J  > 2 cm interactions with the walls 
become important. 
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V is given and a is determined by ( 10) once U is known. By comparing (10) and U 
with experiments we effectively compare the shape of the spherical cap as 
predicted by the theory with the experimental shape. Indeed it is well known 
that (10) holds accurately (see, for instance, Davenport et al. (1967) results for 
polyvinyl alcohol). 

To the zeroth order we obtain from (10) and (13), 

3 V / 4 ~ ~ 3  = 20Re-', (17) 
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FIGURE 4. Comparison of the height and basal radius of the cap, using (13) (solid lines) 
and (20) (dashed lines) with experimental results (dotted lines) for a 6.1% aqueous 
solution of polyvinyl alcohol (Davenport et al. 1967). 

which shows that for large Reynolds numbers the bubble is much smaller than 
the volume within (L). Expanding (14) for small 8 gives 

e (+so)a,-t. (18) 

Unless Reis very large (so that R e d  is small), it is clear from (18) that 8 is usually 
not small. In  general 8 must be computed from the complete equation (14) (and 
not from an expansion of it valid for small 8). Figure 4 compares h and b computed 
from (lo), (13) to (16) with experimental results; the agreement is fair. 

3. Conclusion 
The presence of boundary layers around (L)  perturbs (1 1) by terms of order 

Re-*. Notice in that respect that the error introduced by ignoring the volume of 
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the cap is at  most of order R,-las can be seen from (17) .  Assuming that the 
boundary-layer corrections computed by Harper & Moore (1968), can be used 
in the present case, we obtain, 

#I = 30?rpU2a[l +(0.141nRe-6.6)Re-*]. (19) 

From which we deduce at  once 

U = Uo[ 1 + (6.6 - 0.14 In Re,) ( 9Re0)-t], (20) 
where U, is the velocity given by (13) and Reo = 2paU,/p. Figure 2 shows the 
excellent agreement between the theoretical velocity (equation (20)) and the 
experimental results. In particular, (20) represents a significant improvement 
over (13). Figure 3 shows a similar agreement when F'3 < 2 cm (when wall effects 
are negligible). On figure 4 we also plot h and b using (20) instead of (13). 

It is of some interest to express the drag coefficient C,, based on the sphere of 
radius r whose volume is that of the bubble, in terms of the Reynolds number. 
By definition 

with V = 4?rr3/3. We find at once 
C, = 2gV7/U2nr2, (21 ) 

(22) C, = 6(20Re-l[1 + (0.141nRe- 6.6)R,-*]}4. 

Equation (22) could be used equally well, instead of (20) to compare the theory 
with experiments. Equation (22) also points out a basic difference between 
spherical caps with laminar and turbulent wakes; it shows that the drag coefficient 
decreases with increasing Reynolds number, while experiments show that the 
drag coefficient is constant in the turbulent regime (see, for instance, Haberman 
& Morton 1956). Finally, it should be pointed out that despite the excellent 
agreement with experiments, there is some uncertainty in applying Harper & 
Moore's higher order correction to our problem: the logarithmic term may be 
affected by the presence of the cap, and also, the deformation of (L)  from a 
spherical shape may introduce an additional correction. 

The author wishes to acknowledge helpful discussions with Professors B. T. 
Chu and M. Chen of Yale University. 
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